Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
1.
Transfusion ; 62(7): 1446-1451, 2022 07.
Article in English | MEDLINE | ID: covidwho-1874476

ABSTRACT

BACKGROUND: Hyperhemolysis syndrome (HHS) is a severe delayed hemolytic transfusion reaction seen in sickle cell disease (SCD) patients, characterized by destruction of donor and recipient RBCs. It results in a drop in hemoglobin to below pretransfusion levels and frequently reticulocytopenia. CASE REPORT: We report a case of a man in his thirties with SCD with a recent hospitalization 2 weeks prior for COVID-19. His red cell antibody history included anti-Fy(a) and warm autoantibody. At that time, he was given 2 units of RBC and discharged with a hemoglobin of 10.2 g/dl. He returned to the hospital approximately 1.5 weeks later with hemoglobin 6.0 g/dl and symptoms concerning for acute chest syndrome. Pretransfusion testing now showed 4+ pan-agglutinin in both gel-based and tube-based testing. Alloadsorption identified an anti-N and a strong cold agglutinin. Three least incompatible units were transfused to this patient over several days, with evidence of hemolysis. Further reference lab work revealed anti-Fya , anti-Fyb , anti-Lea , anti-Leb , and an anti-KN system antibody. The patient's hemoglobin nadired at 4.4 g/dl. The patient was treated with a single dose of tocilizumab, his hemoglobin stabilized, and he was discharged. DISCUSSION: We present a case of HHS proximate to recent SARS-CoV-2 infection with multiple allo and autoantibodies identified. Information on the relationship between SARS-CoV-2 infection and HHS is limited; however, it is possible that inflammation related to COVID-19 could predispose to HHS. Tocilizumab is an approved treatment for COVID-19. Additionally, tocilizumab appears to be a promising treatment option for patients with HHS.


Subject(s)
Anemia, Sickle Cell , COVID-19 Drug Treatment , COVID-19 , Anemia, Sickle Cell/complications , Anemia, Sickle Cell/therapy , Antibodies, Monoclonal, Humanized , COVID-19/complications , COVID-19/therapy , Erythrocyte Transfusion/adverse effects , Hemoglobins , Hemolysis , Humans , Isoantibodies , Male , SARS-CoV-2
2.
Am J Hematol ; 97(5): 519-526, 2022 05.
Article in English | MEDLINE | ID: covidwho-1705173

ABSTRACT

Rare cases of COVID-19 vaccinated individuals develop anti-platelet factor 4 (PF4) antibodies that cause thrombocytopenia and thrombotic complications, a syndrome referred to as vaccine-induced immune thrombotic thrombocytopenia (VITT). Currently, information on the characteristics and persistence of anti-PF4 antibodies that cause VITT after Ad26.COV2.S vaccination is limited, and available diagnostic assays fail to differentiate Ad26.COV2.S and ChAdOx1 nCoV-19-associated VITT from similar clinical disorders, namely heparin-induced thrombocytopenia (HIT) and spontaneous HIT. Here we demonstrate that while Ad26.COV2.S-associated VITT patients are uniformly strongly positive in PF4-polyanion enzyme-linked immunosorbent assays (ELISAs); they are frequently negative in the serotonin release assay (SRA). The PF4-dependent p-selectin expression assay (PEA) that uses platelets treated with PF4 rather than heparin consistently diagnosed Ad26.COV2.S-associated VITT. Most Ad26.COV2.S-associated VITT antibodies persisted for >5 months in PF4-polyanion ELISAs, while the PEA became negative earlier. Two patients had otherwise unexplained mild persistent thrombocytopenia (140-150 x 103 /µL) 6 months after acute presentation. From an epidemiological perspective, differentiating VITT from spontaneous HIT, another entity that develops in the absence of proximate heparin exposure, and HIT is important, but currently available PF4-polyanion ELISAs and functional assay are non-specific and detect all three conditions. Here, we report that a novel un-complexed PF4 ELISA specifically differentiates VITT, secondary to both Ad26.COV2.S and ChAdOx1 nCoV-19, from both spontaneous HIT, HIT and commonly-encountered HIT-suspected patients who are PF4/polyanion ELISA-positive but negative in functional assays. In summary, Ad26.COV2.S-associated VITT antibodies are persistent, and the un-complexed PF4 ELISA appears to be both sensitive and specific for VITT diagnosis.


Subject(s)
COVID-19 , Thrombocytopenia , Vaccines , Ad26COVS1 , COVID-19/diagnosis , COVID-19 Vaccines/adverse effects , ChAdOx1 nCoV-19 , Heparin/adverse effects , Humans , Platelet Factor 4 , Thrombocytopenia/chemically induced , Thrombocytopenia/diagnosis
3.
J Clin Apher ; 37(1): 117-121, 2022 Feb.
Article in English | MEDLINE | ID: covidwho-1473857

ABSTRACT

Vaccine-induced immune thrombotic thrombocytopenia (VITT) is a newly described hematologic disorder, which presents as acute thrombocytopenia and thrombosis after administration of the ChAdOx1 nCov-19 (AstraZeneca) and Ad26.COV2.S (Johnson & Johnson) adenovirus-based vaccines against COVID-19. Due to positive assays for antibodies against platelet factor 4 (PF4), VITT is managed similarly to autoimmune heparin-induced thrombocytopenia (HIT) with intravenous immunoglobulin (IVIG) and non-heparin anticoagulation. We describe a case of VITT in a 50-year-old man with antecedent alcoholic cirrhosis who presented with platelets of 7 × 103 /µL and portal vein thrombosis 21 days following administration of the Ad26.COV2.S COVID-19 vaccine. The patient developed progressive thrombosis and persistent severe thrombocytopenia despite IVIG, rituximab and high-dose steroids and had persistent anti-PF4 antibodies over 30 days after his initial presentation. As such, delayed therapeutic plasma exchange (TPE) was pursued on day 32 of admission as salvage therapy, with a sustained improvement in his platelet count. Our case serves as proof-of-concept of the efficacy of TPE in VITT.


Subject(s)
Ad26COVS1/adverse effects , Plasma Exchange/methods , Purpura, Thrombocytopenic, Idiopathic/therapy , Vaccination/adverse effects , Humans , Male , Middle Aged , Platelet Count , Platelet Factor 4/immunology , Purpura, Thrombocytopenic, Idiopathic/etiology
4.
Pathobiology ; 88(1): 15-27, 2021.
Article in English | MEDLINE | ID: covidwho-858185

ABSTRACT

Coronavirus disease 2019 (COVID-19) causes a spectrum of disease; some patients develop a severe proinflammatory state which can be associated with a unique coagulopathy and procoagulant endothelial phenotype. Initially, COVID-19 infection produces a prominent elevation of fibrinogen and D-dimer/fibrin(ogen) degradation products. This is associated with systemic hypercoagulability and frequent venous thromboembolic events. The degree of D-dimer elevation positively correlates with mortality in COVID-19 patients. COVID-19 also leads to arterial thrombotic events (including strokes and ischemic limbs) as well as microvascular thrombotic disorders (as frequently documented at autopsy in the pulmonary vascular beds). COVID-19 patients often have mild thrombocytopenia and appear to have increased platelet consumption, together with a corresponding increase in platelet production. Disseminated intravascular coagulopathy (DIC) and severe bleeding events are uncommon in COVID-19 patients. Here, we review the current state of knowledge of COVID-19 and hemostasis.


Subject(s)
Blood Coagulation Disorders/complications , Blood Platelets/virology , COVID-19/virology , SARS-CoV-2/pathogenicity , Blood Coagulation Disorders/etiology , Blood Coagulation Disorders/virology , COVID-19/complications , Fibrin Fibrinogen Degradation Products/metabolism , Humans , Thrombosis/complications
SELECTION OF CITATIONS
SEARCH DETAIL